Determine where a value falls between ranges to assign points

  • I need some suggestions on the best method to assign points based on how a store performed on different metrics. I have 7 metrics that are used to determine a store's performance. For each of the metrics have a total amount of possible points, and each of the total possible points for each metric will then be added together to assign a ranking from 0 - 100 for each store. I also, need the method flexible enough to handle the addition or reduction of metrics, and also different Store Regions (For example different regions (South, North, East, etc. may have the same metric categories with value ranges that differ or metric categories that differ).

    Here are the Metrics and Values for each of the metric categories.

    MetricHigh
    (100%)
    Mid-High
    (67%)
    Mid-Low
    (33%)
    Low
    (0%)
    Total Possible Points
    Customer Returns1.53.336.671015
    Customer Complaints1.71.81.99215
    Customer Reward Ratio90%85.00%80.00%79.00%10
    Corporate Calls0%0.50%1.00%1.01%5
    Customer Satisfaction90%85.00%80.00%79.00%35
    Stop Loss3%5.00%8.99%9.00%10
    Store Sales $ 8,000.00  $ 5,000.00  $ 3,000.00  $ 1,000.00 10

    Each of the total possible points for each metric will then be added together to assign a ranking from 0 - 100 for each store. 

    So for example...A store has Customer Returns that is
    >= 10 (Low)  they get 0% of the possible points
    < 10 (Low) and >= 6.67 (Mid-Low) they get 33% of the possible points
    < 6.67 (Mid-Low) to >= 3.33 (Mid-High) they get 67% of the possible points.
    < 3.33 (Mid-High) they get 100% of points.

    Here is the temp table that contains each store and the values for each of the 7 metrics.

    if object_id ('tempdb..#stores') is not null

    drop table #stores;

    create table #stores (

    Store_ID varchar(7)

    , Customer_Returns numeric(13,4)

    , Customer_Complaints numeric(13,4)

    , Customer_Reward_Ratio numeric(13,4)

    , Corporate_Calls numeric(13,4)

    , Customer_Satisfaction numeric(13,4)

    , Stop_Loss numeric(13,4)

    , Store_Sales numeric(13,2)

    );

    insert into #stores (Store_ID, Customer_Returns, Customer_Complaints, Customer_Reward_Ratio, Corporate_Calls, Customer_Satisfaction, Stop_Loss, Store_Sales) values

    ('A120','1.2','0','0.9','0','0.52','0.006','200')

    ,('A121','2','1.5','0.7','0.2','0.84','0.05','3000')

    ,('A122','1.87','1.5','0.8','0.05','0.82','0.007','7051')

    ,('A123','3','1.8','1','0.002','0.99','0.03','8901')

    ,('A124','5','3','0.98','0.01','0.7','0.001','5055')

    ,('A125','6','0.05','0.81','0','0.84','0.1','5485')

    ,('A126','2.1','0.07','0.8','0.005','0.91','0','1507')

    ,('A127','15','7','0.87','0.012','0.89','0','8573')

    ,('A128','6.2','0','0.52','0','0.8','0.09','5103')

    ,('A129','4.85','1.52','0.84','0.017','0.7','0.04','1503')

    ,('A130','3.87','1.34','0.82','0','0.65','0.03','9702')

    ,('A131','5.7','1.5','0.99','0.02','0.94','0','1508')

    ,('A132','8.99','2.1','0.7','0','0.9','0','5085')

    ,('A133','1.12','0','0.84','0.01','0.7','0','6503')

    ,('A134','2','2.12','0.91','0.012','0.8','0','9215')

    ,('A135','2.89','0','0.89','0','1','0','10500')

    ,('A136','2.54','1.47','0.8','0.02','0.98','0.001','15087')

    ,('A137','2.2','0','0.7','0','0.81','0','5656')

    ,('A138','2.3','1.54','0.65','0','0.8','0.009','2105')

    ,('A139','1.67','0','0.94','0','0.87','0','8434');

  • After reading some other forum posts I am thinking that I might be able to write the metric ranges (High, Mid-High, Mid-Low, and Low) to variables. Would that be the most efficient way to allow me to update the values, metrics, and be able to use for other regions?

  • Put the metrics in a table.  Then we can join to each metric as needed.

    SQL DBA,SQL Server MVP(07, 08, 09) "It's a dog-eat-dog world, and I'm wearing Milk-Bone underwear." "Norm", on "Cheers". Also from "Cheers", from "Carla": "You need to know 3 things about Tortelli men: Tortelli men draw women like flies; Tortelli men treat women like flies; Tortelli men's brains are in their flies".

  • There is not enough data. In table #stores you provided absolute values for metrics - column names are metrics names, I assume. We don't know which value corresponds to which category (Low, Mid-Low,Mid-High,High). We know that each (Low, Mid-Low,Mid-High,High) carries certain weight (0, 33%, 67% and 100%).

    If my understanding of the problem is correct, wWe perhaps need something like this:

    table Metrics:
    Metric, FromValue, ToValue, Category
    ---------------------------------------------------
    'Customer returns',  0, 15, 'Low'
    'Customer returns',  16, 33, 'Low Mid'
    'Customer returns',  34, 67, 'High Mid''
    'Customer returns', 68, 100, 'High'
    'Customer_Complaints',  0, 15, 'Low'
    'Customer_Complaints',  16, 33, 'Low Mid'
    'Customer_Complaints',  34, 67, 'High Mid''
    'Customer_Complaints', 68, 100, 'High'
    ... and so on for each category

    Then you arrange your input data like this:

    Table StoreMetrics:
    Store_ID Metric      Value
    -------- --------------------- ----------------
    A120,  Corporate_Calls   ,0.0000
    A120,  Customer_Complaints ,0.0000
    A120,  Customer_Returns  ,1.2000
    A120,  Customer_Reward_Ratio ,0.9000
    A120,  Customer_Satisfaction ,0.5200
    A120,  Stop_Loss     ,0.0060
    A120,  Store_Sales    ,200.0000
    A121,  Corporate_Calls   ,0.2000
    A121,  Customer_Complaints ,1.5000
    A121,  Customer_Returns  ,2.0000
    A121,  Customer_Reward_Ratio ,0.7000
    A121,  Customer_Satisfaction ,0.8400
    A121,  Stop_Loss     ,0.0500
    A121,  Store_Sales    ,3000.0000
    A122,  Corporate_Calls   ,0.0500
    A122,  Customer_Complaints ,1.5000
    A122,  Customer_Returns  ,1.8700
    A122,  Customer_Reward_Ratio ,0.8000
    ......
    You may need different From-To values for different metrics, since values in table StoreMetrics are different order of magnitude (say, Store_Sales, Customer_Returns, and Stop_Loss for example.

    Then it is easy to write query like (typing into reply window, may be types)
    :
    SELECT S.StoreID, S.metric
    M.Category, M.FromValue, S.Value, M.ToValue
    FROM StoreMetrics AS S
    JOIN  Metrics AS M ON M.Metric = S.Metric
    WHERE S>Value BETWEEN  M.FromValue and M.ToValue

    I hope this helps.

    🙂

  • I agree with the idea that the existence of the "Low" range and it having a numeric value associated with it has "difficulties" where meaning is concerned.  The question is, what about values either higher or lower (depending on the "direction" of that metrics range values for highs versus lows ?   That's easily enough settled, and the solution I am providing below is a bit more complex than what was presented previously.   I could probably have simplified it somewhat, but I don't have enough time to be sure I have it as minimal as possible.   It takes into account the direction of each metric range, and also adds some ordering to the range values to make it easier to navigate the ranges and make use of simple aggregates.   Not sure that it would perform well with large data volumes, but metrics such as this would have inherent traits that would likely keep the data volume from being all that large:
    CREATE TABLE #Metrics (
        MetricID smallint NOT NULL,
        MetricName varchar(30) NOT NULL,
        MetricOrderBy tinyint NOT NULL,
        MetricDirection bit NOT NULL,
        MetricValue decimal(10,4) NOT NULL,
        MetricPoints decimal(10,8) NOT NULL,
        CONSTRAINT PK_TEMP_Metrics_Name_OrderBy_ PRIMARY KEY CLUSTERED
            (
            MetricName ASC,
            MetricOrderBy ASC
            )
    );
    INSERT INTO #Metrics (MetricID, MetricName, MetricOrderBy, MetricDirection, MetricValue, MetricPoints)
        VALUES    (1, 'Customer_Returns',            1,            0,                10.0000,            0.),
                (1, 'Customer_Returns',            2,            0,                 6.6667,            5.),
                (1, 'Customer_Returns',            3,            0,                 3.3333,            5.),
                (1, 'Customer_Returns',            4,            0,                 1.5000,            5.),

                (2, 'Customer_Complaints',        1,            0,                 2.0000,            0.),
                (2, 'Customer_Complaints',        2,            0,                 1.9900,            5.),
                (2, 'Customer_Complaints',        3,            0,                 1.8000,            5.),
                (2, 'Customer_Complaints',        4,            0,                 1.7000,            5.),

                (3, 'Customer_Reward_Ratio',    4,            1,                 0.7900,            0.),
                (3, 'Customer_Reward_Ratio',    3,            1,                 0.8000,            3.33333333),
                (3, 'Customer_Reward_Ratio',    2,            1,                 0.8500,            3.33333333),
                (3, 'Customer_Reward_Ratio',    1,            1,                 0.9000,            3.33333334),

                (4, 'Corporate_Calls',            1,            0,                 0.0101,            0.),
                (4, 'Corporate_Calls',            2,            0,                 0.0100,            1.66666666),
                (4, 'Corporate_Calls',            3,            0,                 0.0050,            1.66666667),
                (4, 'Corporate_Calls',            4,            0,                 0.0000,            1.66666667),
                
                (5, 'Customer_Satisfaction',    4,            1,                 0.7900,            0.),
                (5, 'Customer_Satisfaction',    3,            1,                 0.8000,            11.66666666),
                (5, 'Customer_Satisfaction',    2,            1,                 0.8500,            11.66666667),
                (5, 'Customer_Satisfaction',    1,            1,                 0.9000,            11.66666667),
                
                (6, 'Stop_Loss',                1,            0,                 0.0900,            0.),
                (6, 'Stop_Loss',                2,            0,                 0.0899,            3.33333333),
                (6, 'Stop_Loss',                3,            0,                 0.0500,            3.33333333),
                (6, 'Stop_Loss',                4,            0,                 0.0300,            3.33333334),

                (7, 'Store_Sales',                4,            1,                1000.00,            0.),
                (7, 'Store_Sales',                3,            1,                3000.00,            3.33333333),
                (7, 'Store_Sales',                2,            1,                5000.00,            3.33333333),
                (7, 'Store_Sales',                1,            1,                8000.00,            3.33333334);

    CREATE TABLE #Stores (
        Store_ID varchar(7) NOT NULL PRIMARY KEY CLUSTERED,
        Customer_Returns numeric(13,4),
        Customer_Complaints numeric(13,4),
        Customer_Reward_Ratio numeric(13,4),
        Corporate_Calls numeric(13,4),
        Customer_Satisfaction numeric(13,4),
        Stop_Loss numeric(13,4),
        Store_Sales numeric(13,4)
    );
    INSERT INTO #Stores (Store_ID, Customer_Returns, Customer_Complaints, Customer_Reward_Ratio, Corporate_Calls, Customer_Satisfaction, Stop_Loss, Store_Sales)
        VALUES    ('A120','1.2','0','0.9','0','0.52','0.006','200.'),
                ('A121','2','1.5','0.7','0.2','0.84','0.05','3000.'),
                ('A122','1.87','1.5','0.8','0.05','0.82','0.007','7051.'),
                ('A123','3','1.8','1','0.002','0.99','0.03','8901.'),
                ('A124','5','3','0.98','0.01','0.7','0.001','5055.'),
                ('A125','6','0.05','0.81','0','0.84','0.1','5485.'),
                ('A126','2.1','0.07','0.8','0.005','0.91','0','1507.'),
                ('A127','15','7','0.87','0.012','0.89','0','8573.'),
                ('A128','6.2','0','0.52','0','0.8','0.09','5103.'),
                ('A129','4.85','1.52','0.84','0.017','0.7','0.04','1503.'),
                ('A130','3.87','1.34','0.82','0','0.65','0.03','9702.'),
                ('A131','5.7','1.5','0.99','0.02','0.94','0','1508.'),
                ('A132','8.99','2.1','0.7','0','0.9','0','5085.'),
                ('A133','1.12','0','0.84','0.01','0.7','0','6503.'),
                ('A134','2','2.12','0.91','0.012','0.8','0','9215.'),
                ('A135','2.89','0','0.89','0','1','0','10500.'),
                ('A136','2.54','1.47','0.8','0.02','0.98','0.001','15087.'),
                ('A137','2.2','0','0.7','0','0.81','0','5656.'),
                ('A138','2.3','1.54','0.65','0','0.8','0.009','2105.'),
                ('A139','1.67','0','0.94','0','0.87','0','8434.');

    WITH MetricRanges AS (

        SELECT 0 AS MetricDirection, 1 AS MetricRange, 'Low' AS RangeName
        UNION ALL
        SELECT 0 AS MetricDirection, 2 AS MetricRange, 'Mid-Low' AS RangeName
        UNION ALL
        SELECT 0 AS MetricDirection, 3 AS MetricRange, 'Mid-High' AS RangeName
        UNION ALL
        SELECT 0 AS MetricDirection, 4 AS MetricRange, 'High' AS RangeName
        UNION ALL
        SELECT 1 AS MetricDirection, 1 AS MetricRange, 'High' AS RangeName
        UNION ALL
        SELECT 1 AS MetricDirection, 2 AS MetricRange, 'Mid-High' AS RangeName
        UNION ALL
        SELECT 1 AS MetricDirection, 3 AS MetricRange, 'Mid-Low' AS RangeName
        UNION ALL
        SELECT 1 AS MetricDirection, 4 AS MetricRange, 'Low' AS RangeName
    ),
        StoreValues AS (

            SELECT X.Store_ID, MD.MetricID, X.Metric, X.MetricValue, MD.MetricDirection
            FROM (
                SELECT Store_ID, Metric, MetricValue
                FROM #Stores
                    UNPIVOT(MetricValue FOR
                         Metric IN ([Customer_Returns], [Customer_Complaints], [Customer_Reward_Ratio],
                                    [Corporate_Calls], [Customer_Satisfaction], [Stop_Loss], [Store_Sales])
                        ) AS UPVT
                ) AS X
                CROSS APPLY (
                    SELECT DISTINCT M.MetricID, M.MetricDirection
                    FROM #Metrics AS M
                    WHERE M.MetricName = X.Metric
                    ) AS MD
    )
    SELECT
        S.Store_ID,
        S.MetricID,
        S.Metric,
        S.MetricValue,
        GT.RangeName AS MetricRange,
        ISNULL(GT.PointsGT, 0) AS TotalPoints
    FROM StoreValues AS S
        CROSS APPLY (
            SELECT X.PointsGT, X.MetricRangeValue, MR.RangeName
            FROM (
                SELECT    ISNULL(SUM(M.MetricPoints), 0) AS PointsGT,
                        CASE S.MetricDirection
                            WHEN 0 THEN ISNULL(MAX(M.MetricOrderBy), 1)
                            WHEN 1 THEN ISNULL(MIN(M.MetricOrderBy), 4)
                        END AS MetricRangeValue
                FROM #Metrics AS M
                WHERE M.MetricName = S.Metric
                    AND M.MetricDirection = S.MetricDirection
                    AND (
                            (
                            M.MetricDirection = 0
                            AND
                            M.MetricValue >= S.MetricValue
                            )
                            OR
                            (
                            M.MetricDirection = 1
                            AND
                            M.MetricValue <= S.MetricValue
                            )
                        )
                ) AS X
                INNER JOIN MetricRanges AS MR
                    ON X.MetricRangeValue = MR.MetricRange
                    AND S.MetricDirection = MR.MetricDirection
            ) AS GT
    ORDER BY
        S.Store_ID,
        S.MetricID;

    DROP TABLE #Metrics;
    DROP TABLE #Stores;

    Take a good close look at what it's doing and see if it offers value.

    Steve (aka sgmunson) 🙂 🙂 🙂
    Rent Servers for Income (picks and shovels strategy)

Viewing 5 posts - 1 through 4 (of 4 total)

You must be logged in to reply to this topic. Login to reply